Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 25(1): 142-154, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049580

RESUMO

Spleen marginal zone (MZ) B cells are important for antibody responses against blood-borne antigens. The signals they use to detect exposure to blood are not well defined. Here, using intravital two-photon microscopy in mice, we observe transient contacts between MZ B cells and red blood cells that are in flow. We show that MZ B cells use adhesion G-protein-coupled receptor ADGRE5 (CD97) for retention in the spleen. CD97 function in MZ B cells depends on its ability to undergo autoproteolytic cleavage and signaling via Gα13 and ARHGEF1. Red blood cell expression of the CD97 ligand CD55 is required for MZ B cell homeostasis. Applying a pulling force on CD97-transfected cells using an optical C-trap and CD55+ beads leads to accumulation of active RhoA and membrane retraction. Finally, we show that CD97 deficiency leads to a reduced T cell-independent IgM response. Thus, our studies provide evidence that MZ B cells use mechanosensing to position in a manner that enhances antibody responses against blood-borne antigens.


Assuntos
Linfócitos B , Tecido Linfoide , Camundongos , Animais , Baço/metabolismo , Transdução de Sinais , Antígenos CD55/metabolismo , Eritrócitos
2.
Proc Natl Acad Sci U S A ; 120(16): e2300099120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040412

RESUMO

B cells that bind soluble autoantigens receive chronic signaling via the B cell receptor (signal-1) in the absence of strong costimulatory signals (signal-2), and this leads to their elimination in peripheral tissues. The factors determining the extent of soluble autoantigen-binding B cell elimination are not fully understood. Here we demonstrate that the elimination of B cells chronically exposed to signal-1 is promoted by cathepsin B (Ctsb). Using hen egg lysozyme-specific (HEL-specific) immunoglobulin transgenic (MD4) B cells and mice harboring circulating HEL, we found improved survival and increased proliferation of HEL-binding B cells in Ctsb-deficient mice. Bone marrow chimera experiments established that both hematopoietic and nonhematopoietic sources of Ctsb were sufficient to promote peripheral B cell deletion. The depletion of CD4+ T cells overcame the survival and growth advantage provided by Ctsb deficiency, as did blocking CD40L or removing CD40 from the chronically antigen-engaged B cells. Thus, we suggest that Ctsb acts extracellularly to reduce soluble autoantigen-binding B cell survival and that its actions restrain CD40L-dependent pro-survival effects. These findings identify a role for cell-extrinsic protease activity in establishing a peripheral self-tolerance checkpoint.


Assuntos
Peptídeo Hidrolases , Tolerância Periférica , Camundongos , Animais , Camundongos Transgênicos , Ligante de CD40 , Catepsina B , Camundongos Endogâmicos C57BL , Autoantígenos
3.
Immunity ; 54(10): 2256-2272.e6, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555336

RESUMO

B cells within germinal centers (GCs) enter cycles of antibody affinity maturation or exit the GC as memory cells or plasma cells. Here, we examined the contribution of interleukin (IL)-4 on B cell fate decisions in the GC. Single-cell RNA-sequencing identified a subset of light zone GC B cells expressing high IL-4 receptor-a (IL4Ra) and CD23 and lacking a Myc-associated signature. These cells could differentiate into pre-memory cells. B cell-specific deletion of IL4Ra or STAT6 favored the pre-memory cell trajectory, and provision of exogenous IL-4 in a wild-type context reduced pre-memory cell frequencies. IL-4 acted during antigen-specific interactions but also influenced bystander cells. Deletion of IL4Ra from follicular dendritic cells (FDCs) increased the availability of IL-4 in the GC, impaired the selection of affinity-matured B cells, and reduced memory cell generation. We propose that GC FDCs establish a niche that limits bystander IL-4 activity, focusing IL-4 action on B cells undergoing selection and enhancing memory cell differentiation.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular/imunologia , Células Dendríticas Foliculares/imunologia , Centro Germinativo/imunologia , Memória Imunológica/imunologia , Interleucina-4/imunologia , Animais , Subpopulações de Linfócitos B/imunologia , Camundongos
4.
Immunity ; 51(2): 310-323.e7, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31204070

RESUMO

The tumor necrosis factor receptor superfamily member HVEM is one of the most frequently mutated surface proteins in germinal center (GC)-derived B cell lymphomas. We found that HVEM deficiency increased B cell competitiveness during pre-GC and GC responses. The immunoglobulin (Ig) superfamily protein BTLA regulated HVEM-expressing B cell responses independently of B-cell-intrinsic signaling via HVEM or BTLA. BTLA signaling into T cells through the phosphatase SHP1 reduced T cell receptor (TCR) signaling and preformed CD40 ligand mobilization to the immunological synapse, thus diminishing the help delivered to B cells. Moreover, T cell deficiency in BTLA cooperated with B cell Bcl-2 overexpression, leading to GC B cell outgrowth. These results establish that HVEM restrains the T helper signals delivered to B cells to influence GC selection outcomes, and they suggest that BTLA functions as a cell-extrinsic suppressor of GC B cell lymphomagenesis.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Proliferação de Células , Sinapses Imunológicas , Ativação Linfocitária , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Comunicação Parácrina , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Imunológicos/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...